Pepsinógeno II

Pepsinógeno II(CLIA)

Información para pedidos

Número de catálogo	Tamaño del paquete
PGII111	2 × 50 ensayos
PGII112	2 × 100 ensayos

Uso Previsto

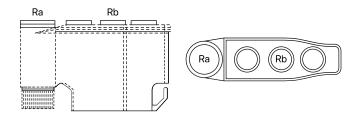
El ensayo de pepsinógeno II que se realiza en la serie CL es un inmunoensayo quimioluminiscente (CLIA) que tiene como objetivo la determinación cuantitativa del pepsinógeno II (PG II) en el suero o plasma humanos.

Resumen

Los pepsinógenos son precursores inactivos de las pepsinas, que son enzimas proteolíticas que se encuentran en el jugo gástrico y que se clasifican inmunológicamente como pepsinógeno I (PG I) y pepsinógeno II (PG II). El PG I es producido por las glándulas fúndicas y, por otro lado, el PG II es producido por las glándulas fúndicas, las glándulas cardíacas, las glándulas pilóricas y las glándulas de Brunner. Se sabe que las células gástricas principales que producen PG I se reducen mayoritariamente y el número de glándulas pilóricas aumenta según el avance de la atrofia en la mucosa de las glándulas fúndicas. En consecuencia, se ha observado una disminución en la proporción entre PGI/ PGII. Por lo tanto, la proporción entre PG I y PG II se determina útil como un indicador de atrofia de la mucosa de las glándulas fúndicas; asimismo, el método de análisis inmunológico de PG I y PG II se determina útil para el cribado colectivo de enfermedades que presentan atrofia de la mucosa de las glándulas fúndicas mediante una combinación de análisis de PG I y la proporción entre PG I y PG II.

Principio del ensayo

El ensayo de pepsinógeno II serie CL es un ensayo de dos lugares, tipo "sándwich", para determinar el nivel de pepsinógeno II.


En el primer paso, las micropartículas paramagnéticas de muestra recubiertas con anticuerpo monoclonal anti-PG II (ratón) y anticuerpo monoclonal anti-PG II (ratón) conjugado a la fosfatasa alcalina se agregan a una cubeta de reacción. Tras la incubación, la PG II presente en la muestra se une a las micropartículas recubiertas de anticuerpo anti-PG II y al anticuerpo anti-PG II conjugado a la fosfatasa alcalina para formar un complejo tipo sándwich. Las micropartículas se capturan magnéticamente y las sustancias sin unir se eliminan por lavado.

En el segundo paso, la solución de substrato se añade a la cubeta de reacción. El anticuerpo anti-PG II (ratón) conjugado a la fosfatasa alcalina cataliza la solución en el inmunocomplejo que queda en las micropartículas. La reacción quimioluminiscente resultante se mide como unidades de luz relativas (RLU) con el fotomultiplicador integrado en el sistema. La cantidad de PG II presente en la muestra es proporcional a las unidades de luz relativas (RLU) generadas durante la reacción. La concentración de PG II puede calcularse mediante la curva de calibración.

Componentes reactivos

Ra	Micropartículas paramagnéticas recubiertas con anticuerpo monoclonal anti-PG II (ratón) en el búfer TRIS con conservante.
Rb	Anticuerpo monoclonal anti-PG II (ratón) conjugado a la fosfatasa alcalina en el búfer MES con conservante.

La posición de cada componente reactivo se muestra en la siguiente figura (vista delantera por la izquierda y vista superior por la derecha):

Almacenamiento y estabilidad

El kit de reactivos de pepsinógeno II (CLIA) es estable sin abrir hasta la fecha de caducidad indicada si se almacena a una temperatura de entre 2 y 8 °C.

El kit de reactivos de pepsinógeno II (CLIA) puede almacenarse en el analizador y usarse hasta 56 días después de abierto si se mantiene a una temperatura de entre 2 y 8 °C.

Preparación del reactivo

Ra: Listo para su utilización Rb: Listo para su utilización

Materiales necesarios, pero no suministrados

Analizador para inmunoensayo de quimioluminiscencia serie CL de Mindray.

Cat.No.PGII211: Calibradores de PG II: 1×1.2 ml para el calibrador C(0), 1×1 ml cada calibrador C(1) y C(2).

Cat.No.GML311: Multicontrol de gastritis (L), 3×2 ml.

Cat.No.GMH311: Multicontrol de gastritis (H), 3×2 ml.

Cat.No.GML312: Multicontrol de gastritis (L), 6×2 ml.

Cat.No.GMH312: Multicontrol de gastritis (H), 6×2 ml.

Cat.No.WB411: Búfer de lavado, 1×10 I.

Cat.No.CSS11: Solución de substrato, 4×115 ml.

Cat.No.CSS12: Solución de substrato, 4×75 ml.

Cubeta de reacción.

Instrumento aplicable

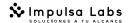
Analizador para inmunoensayo de quimioluminiscencia serie CL de Mindray

Preparación y obtención de muestras

Para este ensayo, se recomiendan muestras de plasma EDTA, heparina sódica y heparina de litio y suero humano. Obtenga todas las muestras de sangre siguiendo las precauciones rutinarias para la punción venosa. Siga las recomendaciones del fabricante del tubo de extracción sanguínea para la centrifugación. Centrífugue las muestras cuando finalice la formación del coágulo. Algunas muestras, en particular las de los pacientes que reciben tratamiento anticoagulante, podrían tener un tiempo de coagulación mayor.

Antes del análisis, compruebe que la materia celular y fibrina residual se han eliminado.

Para lograr unos resultados óptimos, inspeccione todas las muestras para ver si hay burbujas. Elimine las burbujas con una pipeta antes del análisis. Las muestras se deben mezclar bien después de descongelarse. Las muestras descongeladas deben centrífugarse antes de usarse. Si la muestra se cubrió con una capa lipídica tras la centrifugación, debe transferirse a un tubo limpio antes del ensayo. No transfiera la capa lipídica. Manipule con cuidado para evitar la contaminación cruzada. No use las muestras muy hemodizadas. No use las muestras inactivadas con calor.


Las muestras se deben analizar con la mayor brevedad después de su obtención. Si el análisis no se realiza antes de las 24 horas, las muestras se deben almacenar a una temperatura máxima de 2-8 °C. Las muestras deben estar estables durante 7 días a 2-8 °C, 3 meses a -20 °C. Evite más de cinco ciclos de congelación.

Procedimiento del ensayo

Para obtener resultados óptimos con este ensayo, los operadores deben leer detenidamente el manual de funcionamiento del sistema para informarse bien sobre las instrucciones de funcionamiento, el control y la conservación de las muestras, las precauciones de seguridad y el mantenimiento. Prepare también todos los materiales necesarios para el ensayo.

Antes de introducir el kit de reactivos de pepsinógeno II (CLIA) en el analizador por primera vez, el frasco de reactivo sin abrir debe invertirse suavemente, al menos, 30 veces para volver a suspender las micropartículas que se han asentado durante el envío o almacenamiento. Inspeccione visualmente el frasco para confirmar que las micropartículas están suspendidas. Si las micropartículas permanecen adheridas al frasco, continúe volcándolo hasta que se vuelvan a suspender por completo. Si las micropartículas no se suspenden, se recomienda no usar ese frasco de reactivo. Póngase en contacto con el servicio de atención al cliente de Mindray. No vuelque los frascos de reactivo abiertos.

Para este ensayo, se necesitan 10 µl de muestra para un único análisis. Este volumen no incluye el volumen muerto del contenedor de la muestra. Si se realizan más análisis de la misma muestra, se necesita un volumen adicional. Los operadores deben consultar el manual de funcionamiento del sistema y el requisito específico del ensayo para determinar el volumen mínimo de muestra.

Calibración

El pepsinógeno II (CLIA) serie CL se ha estandarizado de acuerdo con un ensayo de pepsinógeno II (CLIA).

La información específica de la curva de calibración principal del kit de reactivos de pepsinógeno II (CLIA) se almacena en el código de barras bidimensional adherido al paquete de reactivos. Se usa junto con calibradores de pepsinógeno II para la calibración del lote de reactivos específico. Cuando se realiza la calibración, en primer lugar, escanee la información de la curva de calibración principal del código de barras en el sistema y, a continuación, use los tres niveles de los calibradores de pepsinógeno II. Antes de realizar cualquier ensayo de pepsinógeno II, es necesario obtener una curva de calibración válida. Se recomienda repetir la calibración cada 4 semanas, cuando se use un nuevo lote de reactivos o cuando los controles de calidad no se ajusten al intervalo de valores especificado. Para obtener instrucciones detalladas de la calibración, consulte el manual de funcionamiento del sistema.

Control de calidad

Se recomienda que los controles de calidad se ejecuten cada 24 horas si las pruebas están en uso o después de cada calibración. La frecuencia del control de calidad se debe adaptar a los requisitos individuales de cada laboratorio. Los dos niveles de controles de calidad recomendados para este ensayo son multicontrol de gastritis (L) y multicontrol de gastritis (H).

Los resultados de los controles de calidad deben ajustarse a los intervalos admisibles. Si un control no se ajusta a su intervalo especificado, los resultados del ensayo correspondiente no serán válidos y las muestras deberán volver a analizarse. Podría ser necesario repetir la calibración. Inspeccione el sistema de ensayo consultando el manual de funcionamiento del sistema. Si los resultados de los controles de calidad siguen sin ajustarse al intervalo especificado, póngase en contacto con el servicio de atención al cliente de Mindray.

Cálculo

El analizador calcula automáticamente la concentración de analitos de cada muestra a partir de la lectura del código de barras con la curva de calibración principal y, además, calcula la función logística de 4 parámetros (4PLC) con las unidades de luz relativas (RLU) generadas desde los calibradores de PG II de los valores de concentración definidos.

Los resultados se muestran en unidades de ng/ml.

Dilución

Las muestras con concentraciones de PG II que superen el límite superior se pueden diluir con el diluyente de muestras de Mindray. La dilución recomendada es 1:5 (ya sea manualmente o de forma automática mediante el analizador). La concentración de la muestra diluida debe ser >1 ng/ml. Después de la dilución manual, multiplique el resultado por el factor de dilución. Después de que los analizadores realizan la dilución automática, el sistema automáticamente multiplica el resultado por el factor de dilución cuando calcula la concentración de la muestra.

Valores esperados

Miki et al. Informaron que la combinación de análisis del nivel de PG I en el suero o el plasma y la proporción entre PG I y PG II resultó útil como un indicador del grado de atrofia de la mucosa de las glándulas fúndicas(1,2,3). Asimismo, informaron que los valores de corte de menos de 70 ng/ml, en el caso del nivel de PG I, y menos de 3, en el caso de la proporción entre PG I y PG II (PG I<70 ng/ml y PG I/II <3), presentaron la mayor tasa de detección de enfermedades que incluyen atrofia de la mucosa de las glándulas fúndicas.(4)

Por las diferencias de parámetros geográficos, raza, sexo y edad, es muy recomendable que cada laboratorio establezca su propio intervalo de referencia.

Limitación

El límite superior de este ensayo es 100 ng/ml. Una muestra con una concentración de PG II inferior al límite superior puede determinarse en términos cuantitativos, mientras que la muestra con una concentración mayor que el límite superior se registra como >100 ng/ml o se diluyen las muestras con diluyente para muestras Mindray.

La concentración de PG II en una muestra concreta, determinada con ensayos de distintos fabricantes, puede variar debido a las diferencias en los métodos de ensayo, la calibración y la especificidad de los reactivos. Los resultados de los ensayos se usarán junto con otros datos para tomar decisiones clínicas, como síntomas, resultados de otras pruebas, historia clínica.

Las muestras de los individuos expuestos a anticuerpos monoclonales de ratón podrían contener anticuerpos antiratón humanos (HAMA(5)). Estas muestras podrían dar valores erróneamente elevados o bajos con los kits de ensayo que usan anticuerpos monoclonales de ratón(6,7). Sin embargo, en este ensayo no se han observado interferencias obvias de HAMA.

Características de rendimiento

Sensibilidad analítica / límite de detección

El kit de reactivos de pepsinógeno II (CLIA) tiene una sensibilidad analítica de ≤0.5 ng/ml. La sensibilidad analítica se define como la concentración más baja de analitos que puede diferenciarse de una muestra que no contiene analitos. Se define como la concentración de PG II con las dos desviaciones estándar superiores al valor de RLU medio calculado con 20 mediciones de una muestra sin analitos.

Intervalo de notificación

El intervalo de notificación se define por la sensibilidad analítica y el límite superior de la curva de calibración principal. El intervalo de notificación del kit de reactivos de pepsinógeno II (CLIA) es de 0.5 a 100 ng/ml (o el límite superior es de hasta 500 ng/ml para las muestras diluidas cinco veces).

Especificidad

Las concentraciones de hemoglobina de hasta 550 mg/dl, bilirrubina de hasta 25 mg/dl, triglicéridos de hasta 3300 mg/dl y proteína total de hasta 10 g/dl no interfieren con el ensayo de pepsinógeno II serie CL. Estas sustancias muestran interferencias inferiores al 10 % en las concentraciones indicadas.

No se observaron interferencias obvias por factor reumatoideo (hasta 500 IU/ml) ni anticuerpo antinuclear. El calibrador de PG II C(0) se enriqueció con PG I. No se observó reactividad cruzada obvia, ya que todos los resultados fueron ≤0.5 ng/ml. Los resultados se resumen en la siguiente tabla.

_	Sustancia	Concentración de reactante PG II observa cruzado (ng/ml)		Criterios de aceptación
	PG I	200 ng/ml	0.02	PG II observada ≤0.5 ng/ml

Efecto gancho de dosis alta

Para el ensayo de pepsinógeno II serie CL no se observó un efecto gancho de dosis alta en las muestras analizadas que contenían hasta aproximadamente 1000 ng/ml de PG II.

Precisión

Se usaron dos controles con valores trazables y predefinidos para verificar la exactitud de este ensayo. Los resultados demostraron que las desviaciones relativas eran inferiores al ± 10 %. Los resultados se resumen en la siguiente tabla.

Muestra	Valor de PG II medido (ng/ml)	Valor definido de PG II (ng/mL)	Desviación relativa
Nivel 1	2.98	3.11	-4.18 %
Nivel 2	27.90	27.36	1.97 %

Precisión

El ensayo de pepsinógeno II serie CL está diseñado para una precisión de ≤8 % (conforme al CV del dispositivo). La precisión se determinó siguiendo los estándares del protocolo EPS-A2 del National Committee for Clinical Laboratory Standards (NCCLS)(1). Se probaron dos niveles de controles de calidad en duplicado en dos series independientes por día, durante un total de 20 días, usando un único lote de reactivo y una curva de calibración. Los datos de precisión se resumen en la siguiente tabla.

Mue	estra	Valor medio de PG II (ng/ml)	de PG II al CV		Conforme al CV del dispositivo
	1	2.97	3.43 %	1.85 %	3.50 %
2	2	30.38	3.38 %	1.97 %	3.40 %

Linealidad

Una muestra de PG II de alta concentración (aproximadamente 100 ng/mL) se mezcló con una muestra de baja concentración (<0.5 ng/mI) en diferentes proporciones, y se generaron una serie de diluciones. La PG II de cada dilución se calculó mediante el ensayo de pepsinógeno II serie CL de Mindray. Se demostró que la linealidad se ajustaba al intervalo de 0.5 ng/mI a 100 ng/mI, y el coeficiente de correlación r es ≥0.990. Los datos de linealidad se resumen en la siguiente tabla.

Concentración (ng/ml)	1	2	3	4	5	6
PG II esperado	0.32	22.50	44.6	66.70	88.84	110.99
PG II medido	0.32	23.70	41.80	69.70	81.08	110.99

Comparación de métodos

El ensayo de pepsinógeno II (CLIA) serie CL de Mindray se comparó con un kit de diagnóstico disponible comercialmente en un estudio de correlación con unas 309 muestras. Los datos estadísticos obtenidos por el modo de cálculo Deming se resumen en la siguiente tabla.

Intervalo de concentración (ng/ml)	Pendiente	Origen	Coeficiente de correlación
0.5~100	1.0159	-0.2694	0.9942

Advertencias y precauciones

- 1. Exclusivo para uso diagnóstico in vitro.
- 2. Siga todas las reglas para manipular los reactivos de laboratorio y tome todas las precauciones de seguridad necesarias.
- 3. Debido a las diferencias de metodología y la especificidad de los anticuerpos, los resultados de los ensayos de la misma muestra pueden ser diferentes si se usan kits de reactivos de otros fabricantes en el sistema Mindray o si se usan kits de reactivos Mindray en otros sistemas.
- 4. No use kits de reactivos con la fecha de caducidad vencida.
- 5. No use reactivos mezclados de distintos lotes.
- 6. Mantenga el paquete de reactivos siempre en posición vertical para garantizar que no se pierdan micropartículas antes de su uso.
- 7. No se recomienda usar paquetes de reactivos abiertos más de 56 días.
- 8. La fiabilidad de los resultados del ensayo no se puede garantizar si no se siguen las instrucciones de este prospecto.
- 9. Los residuos de las reacciones y las muestras deben tratarse como riesgos biológicos potenciales. Las muestras y los residuos de las reacciones se manipularán conforme a las normativas y directrices locales.
- 10. La hoja de datos de seguridad de los materiales (MSDS) está disponible previa solicitud.

Batch Code

representative in the European

Community

Consult Instructions for use

Caution

Temperature Limit Manufacture

REF Catalogue

This Way Up

Referencias

- 1. Miki K, Ichinose M, Shimizu A, et al. Serum Pepsinogens as a Screening test of Extensive chronic gastritis. Gastroenterologica Japonica, 1987, 22(2):133-141.
- 2. Miki K, Oka. H: Significance of determination of serum pepsinogen. Naika, 1986, 58(3):716-718.
- 3. Miki K, Ichinose M, Furihata C, et al. Evaluation of serum group I and II pepsinogens (PG I and PG II) by radioimmunoassay (RIA) in normal controls and patients with various disorders. Nippon Shokakibyo Gakkai Zasshi, 1982, 79(11):2071-2079.
- 4. Oka H, Miki K, et al. Medical application of pepsinogen RIA kit. Rinsho Seijiihoyo, 1989, 19(4):531-537.
- 5. Boscato Lm, Stuart MC. Heterophilic antibodies: a problem for all immunoassays. Clin Chem, 1988, 34:27-33.
- 6. Kricka L. Interferences in immunoassays still a threat. Clin Chem, 2000, 46:1037-1038.
- 7. Bjerner J y otros. Immunometric assay interference: incidence and prevention. Clin Chem, 2002, 48:613-621.
- 8. CLSI. EPS-A2: Vol. 24, No. 25, Evaluation of Precision Performance of Quantitative Measurement Method; Approved Guideline - Second Edition.

© 2017 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Reservados todos los derechos.

Fabricante: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.

Dirección: Mindray Building, Keji 12th Road South, High-tech Industrial Park, Nanshan, Shenzhen, 518057 R.P. China

Dirección de correo electrónico: service@mindray.com

Sitio web: www.mindray.com Tel.: +86-755-81888998 Fax.: +86-755-26582680

Representante de la CE: Shanghai International Holding Corp. GmbH (Europa)

Dirección: Eiffestraße 80, Hamburg 20537, Alemania

Tel.: 0049-40-2513175 Fax.: 0049-40-255726

